Some properties of possibilistic linear equality systems with weakly noninteractive fuzzy numbers

نویسنده

  • Robert Fullér
چکیده

Possibilistic linear equality systems (PLES) are linear equality systems with fuzzy parameters and crisp variables. We study the problem: For a given PLES with weakly noninteractive fuzzy number parameters how does the solution change if the parameters are varied?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On stability in possibilistic linear equality systems with Lipschitzian fuzzy numbers

Linear equality systems with fuzzy parameters and crisp variables defined by the extension principle are called possibilistic linear equality systems. The study focuses on the problem of stability (with respect to perturbations of fuzzy parameters) of the solution in these systems.

متن کامل

Some properties of possibilistic linear equality and inequality systems

Linear equality and inequality systems with fuzzy parameters defined by the extension principle are called possibilistic linear equality and inequality systems. The solution of these systems is defined in the sense of BellmanZadeh [1]. This paper investigate stability and continuity properties of the solution in the above-named systems.

متن کامل

ON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS

In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...

متن کامل

A revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers

In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...

متن کامل

Well-posed fuzzy extensions of ill-posed linear equality systems

Linear equality systems with fuzzy parameters and crisp variables defined by the Zadeh’s extension principle are called possibilistic linear equality systems. This study focuses on the problem of stability (with respect to small changes in the membership function of fuzzy parameters) of the solution in these systems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991