Some properties of possibilistic linear equality systems with weakly noninteractive fuzzy numbers
نویسنده
چکیده
Possibilistic linear equality systems (PLES) are linear equality systems with fuzzy parameters and crisp variables. We study the problem: For a given PLES with weakly noninteractive fuzzy number parameters how does the solution change if the parameters are varied?
منابع مشابه
On stability in possibilistic linear equality systems with Lipschitzian fuzzy numbers
Linear equality systems with fuzzy parameters and crisp variables defined by the extension principle are called possibilistic linear equality systems. The study focuses on the problem of stability (with respect to perturbations of fuzzy parameters) of the solution in these systems.
متن کاملSome properties of possibilistic linear equality and inequality systems
Linear equality and inequality systems with fuzzy parameters defined by the extension principle are called possibilistic linear equality and inequality systems. The solution of these systems is defined in the sense of BellmanZadeh [1]. This paper investigate stability and continuity properties of the solution in the above-named systems.
متن کاملON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کاملA revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers
In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...
متن کاملWell-posed fuzzy extensions of ill-posed linear equality systems
Linear equality systems with fuzzy parameters and crisp variables defined by the Zadeh’s extension principle are called possibilistic linear equality systems. This study focuses on the problem of stability (with respect to small changes in the membership function of fuzzy parameters) of the solution in these systems.
متن کامل